Vattenfall’s Oxyfuel Pilot Plant

First Experiences from Commissioning and Operation

CO2 Net East Workshop
Bratislava, 04. March 2009

Uwe Burchhardt
Project Manager Oxyfuel Pilot Plant
Vattenfall Europe Generation, Germany
Decision process for the Oxyfuel Pilot Plant

2002
GAP Analysis
- Start of project
- Available components
- Known process steps
- Degree of development

2003
Technology Benchmark
- Evaluation of different steps of development
- Decision to develop Oxyfuel

2004
Feasibility Study
- Financial frame
- Comparing scales
- Possible sites
- Risks

2005
Decision for Oxyfuel Pilot Plant
- Building site: Lausitz area
- Scale: 30 MWth
- Complete process chain from ASU to CO_2^ processing
Design considerations for Oxyfuel Pilot Plant

• Basic purpose is to provide operating information to be able to later scale-up the technology to a 400-600 MW\textsubscript{th} demonstration power plant

• Realization a complete process of coal input and oxygen production up to separation of CO\textsubscript{2}

• Possible to operate on full load in air-firing mode and oxyfuel mode

• Designed to be able to operate on lignite and in a second phase on bituminous coal
Location of the Oxyfuel Pilot Plant

Power plant “Schwarze Pumpe”

Building site
Time schedule of the project

- **Planning**
- **Permission process**
- **Construction phase**
- **Commissioning**
- **Operation & test measurements**
View on the Oxyfuel Pilot Plant

- Boiler
- Electrostatic precipitator
- Flue gas desulphurization
- Flue gas condenser
- Air separation unit
- CO₂-plant
- Social and switchgear building

Webcam: www.Vattenfall.de/CCS
Basic data

<table>
<thead>
<tr>
<th>Boiler: dust fired</th>
<th>Combustion heat performance</th>
<th>30 MW<sub>th</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steam production</td>
<td>40 t/h</td>
</tr>
<tr>
<td></td>
<td>Steam parameter</td>
<td>25 bar / 350 °C</td>
</tr>
<tr>
<td>Coal: pulverized lignite (Lausitz)</td>
<td>LHV</td>
<td>21.000 kJ/kg</td>
</tr>
<tr>
<td></td>
<td>Moisture</td>
<td>10,5 %</td>
</tr>
<tr>
<td></td>
<td>Carbon content</td>
<td>56 %</td>
</tr>
<tr>
<td>Media:</td>
<td>Coal demand</td>
<td>5,2 t/h</td>
</tr>
<tr>
<td></td>
<td>Oxygen (purity > 95%)</td>
<td>10 t/h</td>
</tr>
<tr>
<td></td>
<td>CO<sub>2</sub> (liquid)</td>
<td>9 t/h</td>
</tr>
<tr>
<td>Other:</td>
<td>Required area</td>
<td>14.500 m²</td>
</tr>
<tr>
<td></td>
<td>CO<sub>2</sub> capture rate</td>
<td>> 90 %</td>
</tr>
<tr>
<td></td>
<td>Investment</td>
<td>70 Mio. €</td>
</tr>
</tbody>
</table>
System overview of Oxyfuel Pilot Plant

Furnace

2. Pass

DeNOx

3. Pass

Dry Ash

ESP

Fan 1

Hot Recirculation

Dry Ash

Fan 2

FGD

FG-Condenser

CO₂-Process

Steam-HEx

Oxygen

ASU

Air

Nitrogen

Sealgas <1,2 bar

Sealgas 6 bar

Cold Recirculation

Steam-HEx

Air

Sealgas

Nitrogen

Pulverised Coal

Pulverised Coal

Burner

Fan 1

Fan 2

Oxygen

Steam-HEx

Air

Sealgas

Nitrogen
Challenges

• 4 operating states
 - Air operation
 - Oxyfuel operation to atmosphere
 - Oxyfuel operation to CO2-process
 - CO$_2$ evaporation from on-site storage tanks
 (effortful in realization and regulation)
• 3 parallel I&C systems
 (ASU, conventional part, CO2-plant)
• Sulfur-rich flue gas recirculation
• Series connection of 5 fans/compressions
• FGD: external oxidation and high sulfur removal
• Flue gas condensation and high aerosol precipitation
• Fuel transport with air and/or flue gas
• More extensive safety requirements to media
 (CO$_2$, O$_2$, NH$_3$) and systems
Status of the Oxyfuel Pilot Plant

- Commissioning of all components and systems finished (Aug. 2008).
- Security and function test by technical authority (TÜV) finished (Sept. 2008).
- Optimization and verification of warranted characteristics finished.
- Functionality of the Oxyfuel process is verified in pilot scale.
- Until beginning of January 2009
 - > 700 hours of Oxyfuel operation
 - separation and liquefaction of > 800 t CO₂
- After first measurement campaigns in November 2008, start of the test program in January 2009.
Experiences with boiler

- Proven start burners (propane) having problems in Oxyfuel atmosphere due to high dust loads (Flame guards and installation situation had to be optimized)
- Authority demand: Individual burner examinations for all operating states
- Good flame stability in Oxidant at O₂ > 27%(w)
- 25 -30 % humidity in hot recirculation

- Supplying of pure O₂ and mixture in the burner possible
- Use of only a burner influences the burning behavior and the waste gas values
- Different burner swirls necessary for air and oxyfuel operation
Requirements on flue gas scrubbing

<table>
<thead>
<tr>
<th>Component</th>
<th>Composition</th>
<th>Reduction from*</th>
<th>to*</th>
<th>Capture rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP</td>
<td>Ash</td>
<td>11.200 mg/m³</td>
<td>< 20 mg/m³</td>
<td>> 99 %</td>
</tr>
<tr>
<td></td>
<td>SO₂</td>
<td>11.500 mg/m³</td>
<td>< 100 mg/m³</td>
<td>> 99 %</td>
</tr>
<tr>
<td></td>
<td>SO₃</td>
<td>50 mg/m³</td>
<td>< 20 mg/m³</td>
<td>> 50 %</td>
</tr>
<tr>
<td></td>
<td>Ash</td>
<td>20 mg/m³</td>
<td>< 10 mg/m³</td>
<td>> 50 %</td>
</tr>
<tr>
<td>FGD</td>
<td>H₂O</td>
<td>30 vol-%</td>
<td>4 vol-%</td>
<td>> 85 %</td>
</tr>
<tr>
<td></td>
<td>SO₂</td>
<td>100 mg/m³</td>
<td>< 20 mg/m³</td>
<td>> 80 %</td>
</tr>
<tr>
<td></td>
<td>SO₃</td>
<td>20 mg/m³</td>
<td>< 5 mg/m³</td>
<td>> 75 %</td>
</tr>
<tr>
<td></td>
<td>Ash</td>
<td>10 mg/m³</td>
<td>< 1 mg/m³</td>
<td>> 90 %</td>
</tr>
</tbody>
</table>

FG-Condenser

All design data are fulfilled!

All mg/m³ in Norm (dry)
Simplified CO₂ Liquefaction Process

Vent-gas to Atmosphere
40 - 60 vol-% CO₂
20 - 150 °C

Flue gas
77 - 85 vol-% CO₂
20 - 40 °C
1.0 – 1.05 bara

Waste Water
20 - 40 °C
pH value: < 7

CO₂ Product
>99 vol-% CO₂
-30 - -20 °C
15 -17 bara
Attainable CO₂ purities

<table>
<thead>
<tr>
<th>Composition CO₂, liquid</th>
<th>Oxyfuel pilot plant (Technical CO₂)</th>
<th>Comparison to Food quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>> 99,7 %</td>
<td>> 99,99 %</td>
</tr>
<tr>
<td>N₂+Ar+ O₂</td>
<td>< 0,3 %</td>
<td>< 30 ppm</td>
</tr>
<tr>
<td>H₂O</td>
<td>< 50 ppm</td>
<td>< 50 ppm</td>
</tr>
<tr>
<td>SO₂</td>
<td>< 2,5 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>SO₃</td>
<td>< 0,5 ppm</td>
<td>-</td>
</tr>
<tr>
<td>CO</td>
<td>< 10 ppm</td>
<td>< 10 ppm</td>
</tr>
<tr>
<td>NO</td>
<td>< 5 ppm</td>
<td>< 2,5 ppm</td>
</tr>
<tr>
<td>NO₂</td>
<td>< 15 ppm</td>
<td>< 2,5 ppm</td>
</tr>
</tbody>
</table>
Transport concept for pilot phase

- Transport with trailers (22 ton CO_2)
- Max. 7 to 9 trailer per day
- Distance: approx. 350 km
- Storage in depleted gas field
Outlook on test program

- Variation of coal quality (moisture, sulphur content, particle size).
- Tests of special measurement technique for flue gas composition and CO₂ monitoring.
- Material tests for demo plants and 700°C technology under Oxyfuel atmosphere.
- Testing of different burners.
- Tests with bituminous coal.
- DeNOₓ tests at the boiler and for the vent gas stream from the CO₂ plant.
- Test of an integrated dry lignite ignition burner.
Summary

• Oxyfuel works in pilot scale, emission limits are kept.

• Successful integration of plant components from chemical engineering (ASU, CO2 plant).

• Gained experiences from permission process and implementation of secondary clauses for CCS power plants.

• CO$_2$ monitoring over the whole technology chain (capture – transport – storage) developed for the first time world wide.

• World-wide first application for participation in emission trading for a CCS plant.

• First steps towards full scale CCS plants is successfully done.
Vision of the next generation power unit

Concept 1
Oxyfuel boiler

Concept 2
Post combustion capture
Thank you for your attention!