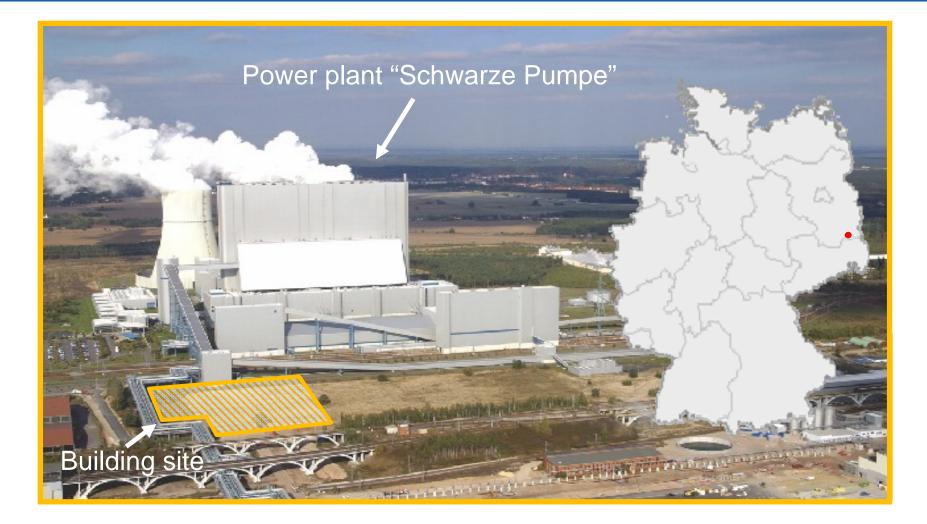

Vattenfall's Oxyfuel Pilot Plant First Experiences from Commissioning and Operation

CO2 Net East Workshop Bratislava, 04. March 2009

Uwe Burchhardt Project Manager Oxyfuel Pilot Plant Vattenfall Europe Generation, Germany

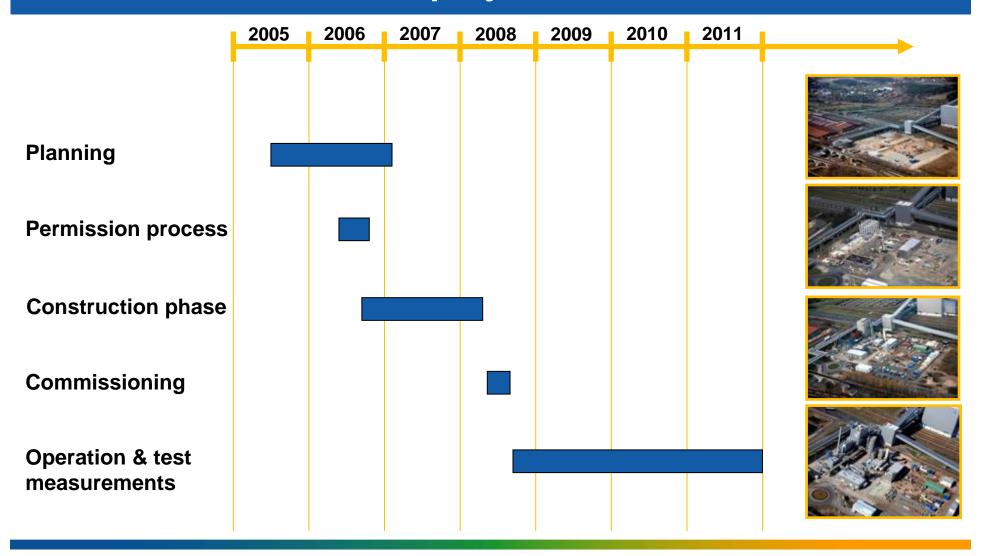
Decision process for the Oxyfuel Pilot Plant

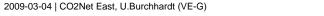
2009-03-04 | CO2Net East, U.Burchhardt (VE-G)

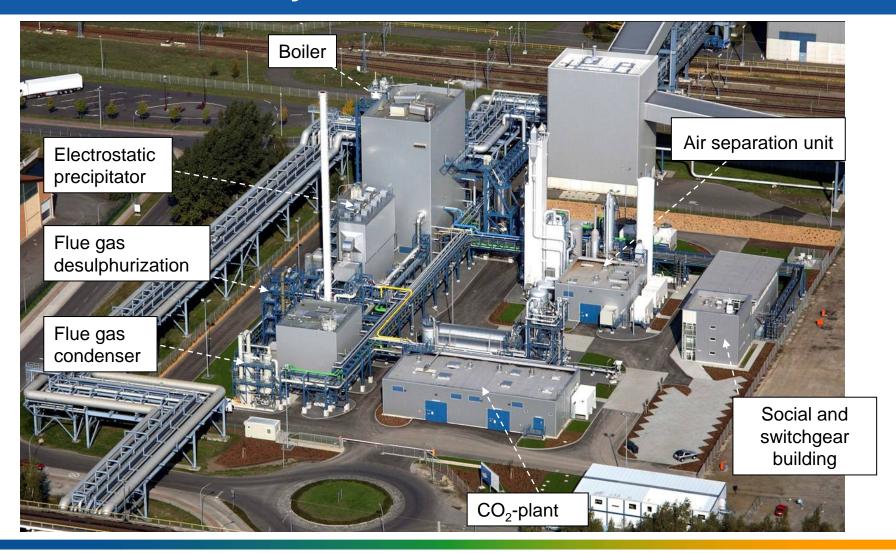


Design considerations for Oxyfuel Pilot Plant

- Basic purpose is to provide operating information to be able to later scale-up the technology to a 400-600 MW_{th} demonstration power plant
- Realization a complete process of coal input and oxygen production up to separation of CO₂
- Possible to operate on full load in air-firing mode and oxyfuel mode
- Designed to be able to operate on lignite and in a second phase on bituminous coal

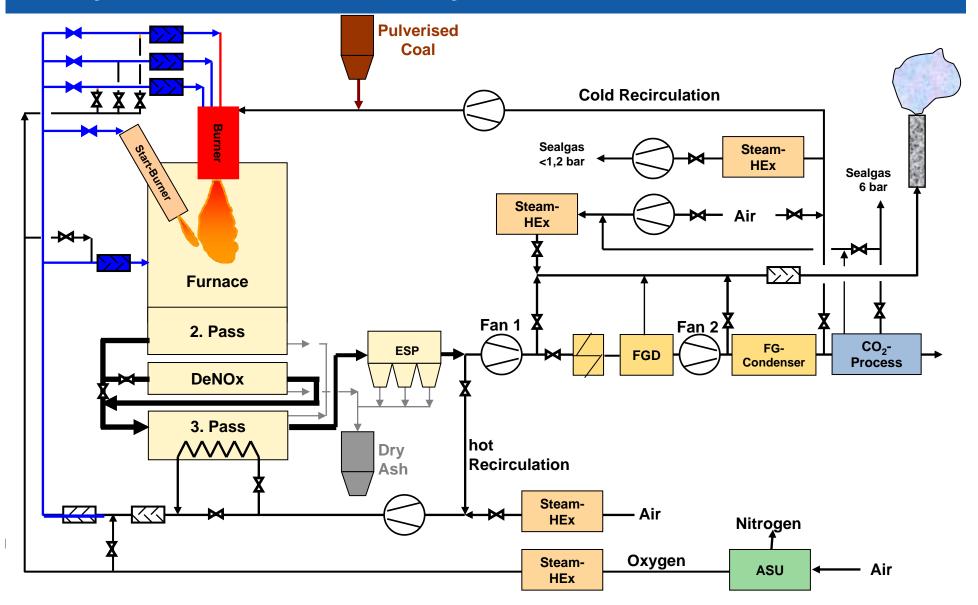



Location of the Oxyfuel Pilot Plant


Time schedule of the project

View on the Oxyfuel Pilot Plant

Webcam: www.Vattenfall.de/CCS


2009-03-04 | CO2Net East, U.Burchhardt (VE-G)

Basic data

Boiler:	Combustion heat performance	30 MW _{th}	
dust fired	Steam production	40 t/h	
	Steam parameter	25 bar / 350 °C	
Coal:	LHV	21.000 kJ/kg	
pulverized lignite	Moisture	10,5 %	
(Lausitz)	Carbon content	56 %	
Media:	Coal demand	5,2 t/h	
	Oxygen (purity > 95%)	10 t/h	
	CO ₂ (liquid)	9 t/h	
Other:	Required area	14.500 m ²	
	CO ₂ capture rate	> 90 %	
	Investment	70 Mio. €	

System overview of Oxyfuel Pilot Plant

Challenges

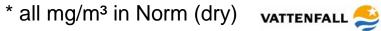
- 4 operating states
 - Air operation
 - Oxyfuel operation to atmosphere
 - Oxyfuel operation to CO2-process
 - CO₂ evaporation from on-site storage tanks (effortful in realization and regulation)
- 3 parallel I&C systems (ASU, conventional part, CO2-plant)
- Sulfur-rich flue gas recirculation
- Series connection of 5 fans/compressions
- FGD: external oxidation and high sulfur removal
- Flue gas condensation and high aerosol precipitation
- Fuel transport with air and/or flue gas
- More extensive safety requirements to media (CO₂, O₂, NH₃) and systems

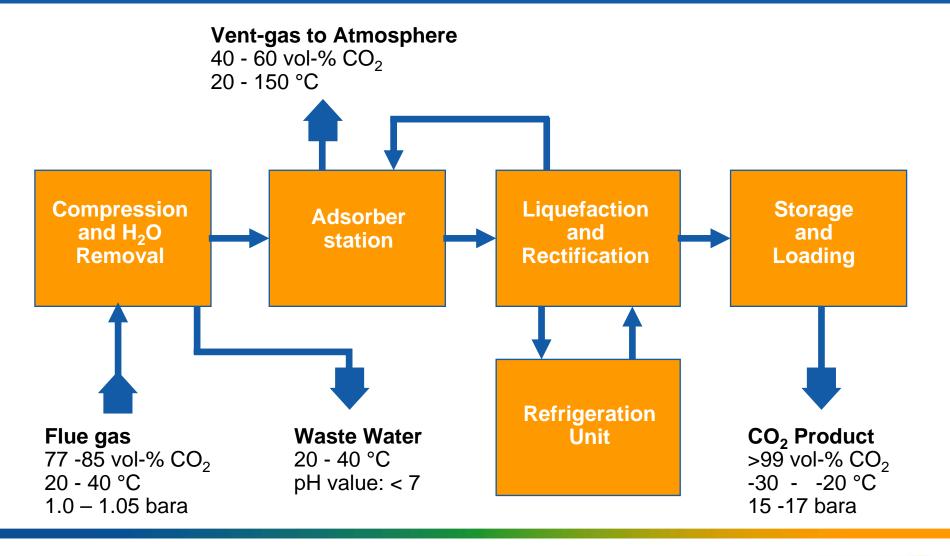
Status of the Oxyfuel Pilot Plant

- Commissioning of all components and systems finished (Aug. 2008).
- Security and function test by technical authority (TÜV) finished (Sept. 2008).
- Permission for regular operation by technical authority granted (Sept. 2008 for air operation, Oct. 2008 for Oxyfuel operation).
- Optimization and verification of warranted characteristics finished.
- Functionality of the Oxyfuel process is verified in pilot scale.
- Until beginning of January 2009
 - > 700 hours of Oxyfuel operation
 - separation and liquefaction of > 800 t CO₂
- After first measurement campaigns in November 2008, start of the test program in January 2009.

Experiences with boiler

- Proven start burners (propane) having problems in Oxyfuel atmosphere due to high dust loads (Flame guards and installation situation had to be optimized)
- Authority demand: Individual burner examinations for all operating states
- Good flame stability in Oxidant at $O_2 > 27\%(w)$
- 25 30 % humidity in hot recirculation
- Supplying of pure O₂ and mixture in the burner possible
- Use of only a burner influences the burning behavior and the waste gas values
- Different burner swirls necessary for air and oxyfuel operation




Requirements on flue gas scrubbing

Component	Composition	Reduct from*	ction to*	Capture rate
ESP	Ash	11.200 mg/m ³	< 20 mg/m ³	> 99 %
	SO ₂	11.500 mg/m³	< 100 mg/m³	> 99 %
FGD	SO ₃	50 mg/m³	< 20 mg/m ³	> 50 %
	Ash	20 mg/m³	< 10 mg/m³	> 50 %
	H ₂ O	30 vol-%	4 vol-%	> 85 %
FG-	SO ₂	100 mg/m³	< 20 mg/m³	> 80 %
Condenser	SO ₃	20 mg/m³	< 5 mg/m³	> 75 %
	Ash	10 mg/m³	< 1 mg/m³	> 90 %

All design data are fulfilled !

Simplified CO₂ Liquefaction Process

CO₂- plant in detail

Attainable CO₂ purities

Composition CO ₂ , liquid	Oxyfuel pilot plant (Technical CO ₂)	Comparison to Food quality
CO ₂	> 99,7 %	> 99,99 %
N ₂ +Ar+ O ₂	< 0,3 %	< 30 ppm
H ₂ O	< 50 ppm	< 50 ppm
SO ₂	< 2,5 ppm	< 1 ppm
SO ₃	< 0,5 ppm	-
СО	< 10 ppm	< 10 ppm
NO	< 5 ppm	< 2,5 ppm
NO ₂	< 15 ppm	< 2,5 ppm

Transport concept for pilot phase

- Transport with trailers (22 ton CO₂)
- Max. 7 to 9 trailer per day
- Distance: approx. 350 km
- Storage in depleted gas field

Outlook on test program

- Variation of coal quality (moisture, sulphur content, particle size).
- Tests of special measurement technique for flue gas composition and CO₂ monitoring.
- Material tests for demo plants and 700°C technology under Oxyfuel atmosphere.
- Testing of different burners.
- Tests with bituminous coal.
- DeNO_X tests at the boiler and for the vent gas stream from the CO₂ plant.
- Test of an integrated dry lignite ignition burner.

Summary

- Oxyfuel works in pilot scale, emission limits are kept.
- Successful integration of plant components from chemical engineering (ASU, CO2 plant).
- Gained experiences from permission process and implementation of secondary clauses for CCS power plants.
- CO₂ monitoring over the whole technology chain (capture transport storage) developed for the first time world wide.
- World-wide first application for participation in emission trading for a CCS plant.
- First steps towards full scale CCS plants is successfully done.

Vision of the next generation power unit

Concept 1 Oxyfuel boiler Concept 2 Post combustion capture

2009-03-04 | CO2Net East, U.Burchhardt (VE-G)

Thank you for your attention !

