

, sequestration

carbonatizati

www.geology.sk

Origin of new stable products using

Ľ. TUČEK, K. ČECHOVSKÁ, J. DERCO, Z. NÉMETH, Ľ. KUCHARIČ & M. RADVANEC

State Geological Institute of Dionýz Štúr (ŠGÚDŠ) Jesenského 8, SK-040 01 Košice, Slovak Republic Tel.: +421-55-62500-43, Fax.: -44; <u>lubomir.tucek@geology.sk</u>; <u>zoltan.nemeth@geology.sk</u>

Mineral sequestration

1. Theory

QUALITY of ATMOSPHERE – GRADUAL DETERIORATION by extensive release of CO₂ into atmosphere

Main producers of CO₂ in <u>Slovakia</u> (183 producers; limits for 2008 <u>41.261 mil. t.</u>):

1. Electrical and heating industries (e.g. electrical plant in Eastern Slovakia

- (e.g. electrical plant in Eastern Slovakia 5.36 mil. t. in 2008)
- 2. Metallurgical industry and steelworks (<u>11.4 mil. t.</u> in 2008)
- 3. Industry where the carbonate-bearing raw material is decomposed by heat (limekilns, magnesite dressing plants, cement factories)
- **4. Traffic (mainly automobile transport)** (2.45 mil. t. in 2008 - production of petrol)
- 5. Combustion of waste

Definition of CO₂ sequestration :

- 1. catching 2. deposition
- 3. storing

CARBON DIOXIDE

CO₂ sequestration:

- > physical method (e.g. geological storing)
- >biological method (e.g. reforestation)

<u>chemical method (e.g. mineral sequestration)</u>

Catching of CO₂ = its removal

- From combustion gas
- from technological gas or atmosphere Obtaining of high purity CO₂ (above 98 %), which can be:

Separation of CO₂ from:

- nitrogen oxides (NO_x)
- sulphur oxides (SO_x)
- carbon oxide (CO)
- oxygen (O₂)
- water vapour (H₂O)

- other gass compounds (methane, hydrosulphide)
- solid particles

can be done by numerous methods and ways

CO₂ sequestration by carbonatization safe method of liquidation of industrial CO₂

Simplified principle of carbonatization exothermic reaction:

 $CaO + CO_2 = CaCO_3 + 179 \text{ kJ/mol}$ $MgO + CO_2 = MgCO_3 + 118 \text{ kJ/mol}$

Final result of reactions \rightarrow solid and stable products - carbonates

Mineral carbonatization:

>direct method (single-phase method)

>indirect method (two-phase method)

Direct method: Reacting mineral components directly enter into the reaction with CO₂

Indirect method: mineral (reacting) components are extracted from mineral matrix and consequently react with CO₂

Natural conditions -

mineral carbonatization (especially direct) represents very slow process

To accelerate reactions:

 inevitable technological optimalization of all factors, influencing the reaction kinetics

Modification of entering mineral compounds –

- grain-size,
- > thermic,
- > chemical,
- physical-mechanical or their combination.

<u>General factors</u>, influencing to reaction rate and forming of final products:

- > mineral and chemical composition of entering rocks (activity of their components, purity of gass regarding CO_2)
- >state of entering components, their mutual ratio
- ≻temperature (T)
- ➢ pressure (p) CO₂

reaction time – time of mutual activity of phases with CO₂
 grain-size, porosity and activity of specific surface of material
 modification of entering components (chemical, thermic, ...)
 reaction conditions – static or dynamic
 pH of reaction environment
 type of additives, reagents,...
 density, resp. viscosity of reacting suspension

<u>Advantages</u> of mineral sequestration of CO₂:

CO₂ is firmly tied on qualitatively new and stable products
 Prepared products - carbonates are safe for environment
 Reactions with CO₂ resulting in carbonate origin are exothermic
 Liquidation (change) on final products occurs in relatively short time

(1 hour till 2 days)

- Carbonates can be deposited and stored unlimitedly long time
 Finances for expensive monitoring are saved
- Waste (CO₂) reacts with other (harmful) waste (e.g. serpentinite) and useful matter originates (protection of environment)
- New mineral compounds can be used in various industrial branches (anorganic filling agents – plastics, colours, ...)

Mineral sequestration

2. Results of experiments

www.geology.sk

Research in ŠGÚDŠ Bratislava is based on the project "Quantitative parameters of selected geological structures appropriate for CO₂ storage"

The **CO₂ sequestration** by carbonatization at certain p-T conditions:

$$Mg_{3}Si_{2}O_{5}(OH)_{4} + 3CO_{2} = 3MgCO_{3} + 2SiO_{2} + 2H_{2}O$$

minerals of <u>serpentine group (mainly chrysotile</u>) + CO₂

=> nesquehonite, hydromagnesite => magnesite

CO₂ sequestration tested on ultramafics from localities:

www.geology.sk

Pretreatment of samples: drying, refining, homogenization, quartering and sorting

Homogeneous parts of samples: X-ray diffraction analyses, chemical analyses, DTA-TGA, microprobe analyses

Hodkovce 2 – crushed stone (granularity beneath 1 mm)

www.geology.sk

Hodkovce 2 – detail of crushed stone beneath 1 mm

Hodkovce 2 – serpentinite fragment

www.geology.sk

Hodkovce 2 – crushed stone after thermal processing

Sample from locality HODKOVCE 2

Chemical composition: Mineral composition:

SiO ₂	= 40.01 %
Al_2O_3	= 0.77 %
Fe ₂ O ₃	= 8.04 %
FeO	= 0.11 %
CaO	= 0.24 %
MgO	= 36.73 %
TiO ₂	= 0.05 %
Cr ₂ O ₃	= 0.334 %
MnO	= 0.07 %
Na ₂ O	= 0.01 %
K₂Ō	= 0.02 %
P_2O_5	= 0.01 %
Loss.ig	n.= 13.44 %

Serpentine minerals	= 8	30.3 %
olivine + pyroxene	=	9.9 %
magnetite (maghemite)	=	8.9 %
calcite	=	0.4 %
chromite	=	0.5 %
Sum	='	100.0 %

Pressure, temperature and time constraints of reactions aimed to formation of new solid mineral forms by means of rocks from studied locaties and gaseous CO_2 :

Pressure CO_2 = 0,1 - 0,3 MPaTemperature= 22 - 200 °CReaction time= 5 - 20 hoursCrystallization time= 4 - 24 hodín

Results of reactions → products with solid chemical bounds of CO₂ on: □ solid, transitional phases: > amorphous phase of Mg – Si > amorphous phase of Si

□ solid, new products: nesquehonite - Mg

- hydromagnesite
- barringtonite

dypingite

- $Mg(HCO_3)(OH)$. $2H_2O$
- $-Mg_{5}(CO_{3})_{4}(OH)_{2} \cdot 4H_{2}O$
- $MgCO_3 \cdot 2H_2O$
- $Mg_5(CO_3)_4(OH)_2 \cdot 5H_2O$

Hodkovce 2 - nesquehonite

www.geology.sk

Hodkovce 2 – magnified detail of nesquehonite

www.geology.sk

Hodkovce 2 – magnified detail of nesquehonite

www.geology.sk

Hodkovce 2 – detail of nesquehonite + hydromagnesite

Hodkovce 2 - hydromagnesite

Hodkovce 2 - hydromagnesite

Jasov 1 - nesquehonite

Jasov 1 – detail of nesquehonite

Rudník 2 – detail of nesquehonite

Rudník 2 – detail of nesquehonite

www.geology.sk

Rudník 2 – detail of nesquehonite + hydromagnesite

Komárovce 1-11 - nesquehonite

Komárovce 1-11 - detail of nesquehonite

www.geology.sk

Nesquehonit a hydromagnezit, synteticky pripravené minerály pôsobením CO na serpentinit z lokality Rudnik. Vzorka RU - 2 - C.

Rudník 2 – nesquehonite and hydromagnesite

www.geology.sk

Dobšiná – former exploitation of chrysotile asbestos from ultramafics

www.geology.sk

Dobšiná – CO₂ sequestration => removal of environmental load

ŠGÚDŠ - ATNS Applied Technology of Industrial Minerals State Geological Institute of Dionýz Štúr (ŠGÚDŠ) Jesenského 8, SK-040 01 Košice, Slovak Republic Tel.: +421-55-62500-43, Fax.: -44; <u>lubomir.tucek@geology.sk</u>; <u>zoltan.nemeth@geology.sk</u>

www.geology.sk

May the workshop CO₂ Capture and Storage starts **new and vivid** collaboration of scientists leading to final goal – protecting the Earth against climate changes