

Principles of CO₂ geological storage

Isabelle Czernichowski-Lauriol CO₂GeoNet Network Manager BRGM, Orléans, France www.co2geonet.eu

Outline

Putting carbon back into the ground!
 Main options for CO₂ geological storage
 Trapping processes in the reservoir
 The pioneer storage projects
 Key challenges for widespread deployment
 The role of CO₂GeoNet Network of Excellence

• 1. Putting carbon back into the ground!

CO₂ fluxes between the Earth and the atmosphere (in billion tons of carbon per year)

Putting carbon back into the ground!

Nature's geological CO₂ storage projects

GeoNet

Natural CO₂ fields Exploited carbogaseous waters (drinking water, spa)

CO₂ Capture and Storage (CCS)

A promising option to help cut worldwide CO_2 emissions in half by 2050

2. Main options for CO₂ geological storage

CO₂ Geological storage options

Porous Reservoir Rocks

Tight Cap Rocks

Unconsolidated Clay Clay Stone Marl Salt Rock

Comparison of storage options

The different types of storage			IEA, GHG, 2004
	CO ₂ Capacity (in Gt)	Advantages	Disadvantages
Hydrocarbon reservoirs	930 Gt	Trapping structures impermeable to non- reactive gases. Well-known structures. Economic potential through EOR.	Generally far from CO ₂ emission sites. Storage capacities often limited.
Deep saline aquifers	400 to 10,000 Gt	Widespread geographic distribution and vast storage potential. Facilitates the search for storage sites close to the sources of CO ₂ emissions. Water unfit for drinking.	Poorly characterized to date.
Unmineable coal seams	40 Gt	Near CO ₂ emission sites. Economic potential through methane recovery.	Injection problems due to the poor permeability of coal. Limited storage capacities.

Geological storage capacity is at least 2000 Gt CO_2 (IPCC SRCCS 2005), i.e. enough to store several centuries of CO_2 industrial emissions

• 3. Trapping processes in the reservoir

CO₂ stored at depths greater than 800m in a dense ("supercritical") state

Critical point: 31°C, 73 bars

Rapid rise of CO₂ upwards in the reservoir– accumulation beneath the caprock

Partial mineralization on the very long term

Precipitation of carbonate minerals (calcite CaCO₃, etc.)

Partial mineralization on the very long term

Precipitation of carbonate minerals (calcite $CaCO_3$, etc.)

CO₂ trapping forms in aquifers

- Physical trapping
 - Dense supercritical CO_2 phase (> 31°C at 73 bars)
- Chemical trapping
 - Solubility trapping: CO₂(aq), HCO₃⁻, CaHCO₃⁺, MgHCO₃⁺, NaHCO₃⁰, …
 - Mineral trapping: $CaCO_3$ (calcite), $FeCO_3$ (siderite), $NaAlCO_3(OH)_2$ (dawsonite), ...

Increasing importance with time

Geological criteria for a good storage site

- Depth greater than 800 m
- Sufficient porosity, permeability and geographic extension to enable good injectivity and large storage capacity
- Impermeable caprock on top of the reservoir, without defaults, faults and fractures, to ensure long term containment
- Structural trap (dome shape) helps to better control the lateral extension of the CO2 plume

4. The pioneer storage projects

Pioneer commercial CCS projects

- Sleipner, deep saline aquifer, Norway, 1 Mt CO₂/y since 1996 (Statoil)
- Weyburn, oil reservoir, Canada, 1,8 Mt CO₂/y since 2000 (EnCana)
- In-Salah, gas reservoir, Algeria, 1 Mt CO₂/y since 2004 (BP)

The Sleipner CO₂ storage project

IEA Weyburn CO₂ Monitoring and Storage Project

CO₂ EOR and storage

Scheme for EOR through CO₂ storage

Source: IPCC

In-Salah (Algeria)

In-Salah (Algeria)

5. Key challenges for widespread deployment

Technical challenges for storage: efficiency and security up to several centuries

- Site selection, characterization and capacity assessment
- Injectivity in the reservoir
- Integrity of cap rocks and wells
- Predictive modelling of CO2 fate and reservoir behaviour,
- Monitoring methods
 (geophysical, geochemical, biogeochemical, remote sensing)
- Safety analysis of the sites
- Remediation methods
- Impact of impurities co-

injected with the CO2 CO2NET-EAST Workshop , Bratislava, 3-4 March 2009

A step change is now vital

- Large portfolio of EC research projects since 1993
- Need now to learn by doing!
- EU Flagship Programme: <u>10-12 integrated</u>, <u>large-scale CCS</u> <u>demonstration projects Europe-wide by 2015</u> - to demonstrate a diverse range of infrastructure, technologies, fuels and storage locations (announcement in 2007)
- EU « Climate action and renewable energy package », approved in Dec. 2008
 - Directive on the geological storage of CO2
 - Other measures to stimulate the demonstration of CCS in power plants, to catalyze the finance for CCS, and to prepare early for wide-scale deployment
 - Etc.

Public support will be essential

Main steps of a storage project

6. The role of CO₂GeoNet Network of Excellence

CO₂GeoNet Network of Excellence⁴

CO₂GeoNet is <u>the</u> EU scientific body on CO₂ geological storage: integrated community of researchers with <u>multidisciplinary expertise</u>, <u>durably</u> engaged in enabling

the efficient and safe geological storage of CO_2

- 13 partners over 7 countries, more than 150 researchers
- Activities:
 - Joint research on all storage aspects
 - Training
 - Information / communication
 - Scientific advice
- Created as a FP6 Network of Excellence with EC initial support for 5 years (6 million €, April 2004 March 2009).
- An Association, legally registered under the French law, has been launched in 2008.

Denmark: GEUS France: BRGM, IFP Germany: BGR Italy: OGS, URS The Netherlands: TNO Norway: NIVA, IRIS, SPR UK: BGS, HWU, IMPERIAL

An independent scientific body for Europe is essential to build trust on storage and to support wide scale implementation

Key events in 2009

- <u>March 18-20, Venice</u>: 4th CO₂GeoNet Open Forum a major international event open to a wide audience (policymakers, public authorities, industrial stakeholders, regulatory bodies, NGOs, engineers and scientists, etc.)
- <u>November 5-6, Paris</u>: 3rd International Symposium on CO₂ capture and storage organised by IFP, BRGM, ADEME
- <u>November 22-27, Austria:</u> ESF Research Conference on CO₂ storage organised by CO₂GeoNet

www.co2geonet.eu

www.brgm.fr

